УДК 519.72(075)

САТЕЛЛИТЫ ИНФОРМАТИКИ: ПОДВИЖКИ И ИМИТАЦИИ («ИНФОРМАЦИОННЫЕ ЗНАНИЯ», «ИНФОРМОЛОГИЯ», «ИНФОДИНАМИКА», «ИНФ ОРМАЦИОЛОГИЯ»)

Бондаревский А.С.

Москва, Зеленоград, e-mail: asb-research@mail.ru

С этимологической точки зрения информатика – это наука об автоматизации информационных операций. В настоящее время существуют следующие сателлиты информатики, – такие науки, как: «информационные знания», «информология», «информания и «информациология». Посредством использования алфавита приведенного выше определения информатики получается, что первые три из этих сателлитов оказываются связанными следующими отношениями включённости: информационные знания ⊂ информатика ⊂ информология ⊂ информациологии, то она является имитацией информинамики, ухудшенной многочисленными некорректностями.

Ключевые слова: информатика, информационные операции, информационные знания, информология, информационная ботаника, информационная физиология, информационная психология

INFORMATICS SATELLITES: ADVANCES AND SIMULATION («INFORMATION SCIENCE», «INFORMOLOGY», «INFODYNAMICS», «INFORMATIOGY»)

Bondarevsky A.S.

Moscow, Zelenograd, e-mail: asb-research@mail.ru

Keywords: informatics, information operations, information science, informology, infodyna mics, informatilogy, informational botany, informational physiology, informational psychology

«Самые главные формы прекрасного — это порядок, соразмерность и определённость».

Аристотель

В настоящее время, наряду с информатикой существует ряд её сателлитов, однокоренных с информатикой информационных наук, которые развиваются параллельно и являются ещё менее определёнными, чем в своём сегодняшнем представлении информатика. Речь идёт о распространённых преимущественно в Великобритании¹ «информационных знаниях» («information science»), а также «информологии» («informology») Сифорова, «инфодинамике» («infodynamics») Ульяновича-Пормансора и «информациологии» («informatiogy») Юзвишина. Исходя из полученного в [2] этимологически-дедуктвного определения информатики, как науки об автоматизации информационных операций, выявляются системные, – в алфавите понятий информатики по [1], отношения этих наук.

1. Информационные знания. В настоящее время в большинстве литературных источников информационные знания определяются, как наука о «переработке, запоминании, поиске и распространении информации в техногенной и антропогенной сферах» [3]. Здесь очевидно имеет место полное совпадение этого определения «информационных знаний» с рядом наиболее избыточных из действующих определений информатики [4 и др.].

Изначально же понятие «информационных знаний» появилось в середине 60-х годов усилиями специалистов по так называемой «научной информации» (информационно-автоматизационному аспекту библиотечного, музейного и архивного дела). Оно появилось в качестве альтернативы сотритег science учёных-компьютерщиков, – как средство научного размежевания этих знаний.

При таком понимании информационных знаний в литературе 60-х годов они фигурировали, как наука об информационно-поисковых процессах и их физическом исполнении [наука о процессах информационного поиска (включая исполнение) единиц хранения информации в библиотеках, музеях и архивах] [5].

¹ Если верить «Encyclopadia Britannica» [1], то в Великобритании вообще отсутствует понятие информатики, – имеет место только понятие информационных знаний.

В настоящее же время в мировой литературе наиболее полно информационные знания раскрываются, как сочетание информатики в смысле computer science с такими науками, как «библиотечное дело, музееведение, связь, управление (здесь таковое в смысле библиотечно-музейно-архивного менеджмента), теория искусственного интеллекта, философия, математика» [3].

Здесь следует отметить некую, неизменно присутствующую во всех современных определениях информационных знаний, ориентацию не только на техногенные, но ещё и на *антропогенные* и именно информационные *процессы*.

Недостатки этих определений:

 Неопределённость ориентация формационных знаний на антропогенные процессы-операции [неизвестно, к чему они относятся, - к объекту этих знаний или предмету или же к объекту и (&) предмету]. Но, ... как показано в [6], в информатике к её объекту относятся как техногенные, так и антропогенные информационные операции (ИО). А это значит, что «стартом» информатики (её исследовательским началом), - информационными операциями объекта информатики, могут быть ИО как техногенные, так и антропогенные. Что же касается «финиша» информатики (её практических результатов), - информационным операциям предмета информатики, то ими могут быть только ИО техногенные.

– Использование в качестве генерализационного понятия такового «информационные процессы». Но ..., аналогичное использование в определении информатики [1] понятия «информационные операции».

– Использование в информационных знаниях в качестве генерализационного понятия такового «информационные процессы», вместо «информационные операции» (ИО), не позволяет привлечь к этим знания все имеющие место наработки в области теории информационных операций [7, 8]. В результате в информационные знания, как представляется, неоправданно попадают такие фундаментальности, как, скажем, философия и математика [3], Но совершенно очевидна неоправданность исключения из информационных знаний наук об ИО классов «Восприятие» и «Воспроизведение» [7, 8]: измерения, контроля; контрольного и определительного (измерительного) испытаний по ГОСТ 16504-81 (операций функционального контроля, технической диагностики; профессионального, учебного, психологического, спортивного тестирования); ИО идентификация статических и динамических объектов управления; ИО функции меры (операций воспроизведения физических величин; функций контрольных образцов, мер, эталонов, нормальных элементов, источников питания, генераторов; операций продуцирования (производства) материальных объектов-изделий, процессов и энергии; ИО регулирования и управления).

– Неявность (непроработанность?) отношения процессов, рассматриваемых в информационных знаниях, к их (процессов) автоматизации.

В результате получается, что наука «информационные знания» представляют собой недостаточно чётко, — индуктивно (перечислением входящих субъектов), сформулированную составляющую² науки «информатика» Т.е. выходит, что информационные знания — это есть несколько «подпорченно» сформулированная составляющая информатики в представлении [2], т.е.: информационные знания ⊂ информатика.

2. **Информология**. Понятие её было введено в 1977 году академиком В. Сифоровым и его коллегой А. Сухановым в [9]. Несколько позднее, — в 1985-м году, оно было использовано (без ссылки на В. Сифорова и А. Суханова) В. Коганом [10].

Но при всём при том в англоязычной Википедии [11] всё же утверждается, что понятие информологии было введено в 1993 году профессором «библиотечных дел», - информационной библиографии, Тегеранского университета А. Хорри (А. Horri). Это утверждении, строится на основе утверждения самого А. Хорри, которое содержится в издаваемом им же на фарси и английском языках одноименном журнале «Informology» [12]. Там же проф. А. Хорри утверждает, что, независимо от него, понятие информологии было введено в России, но позднее, - в 1994 году неким В. Мокием³, которого А. Хори квалифицирует, как теоретика информологии. Т.е. А. Хори – это практик информологии, а В Мокий - её теоретик. И всё это, - без какой-либо ссылки

² Здесь имеется в виду неучёт в составе информационных знаний принадлежащих информатике ИО классов «Восприятие» и «Воспроизведение».

³ В. Мокий – руководитель проблемной лаборатории информационных полей Международного института информатики биосферы – (? – А.Б.). Кстати, как представляется автору, нечто, называемое «информационным полем», вообще не имеет места в природе. (Информация – это есть дуалностьность семантики и формы семантики. При этом последняя может быть материальной и информационной. Тогда можно говорить о поле материальной формы семантики. Но что такое поле самой семантики? Необходимым условием поля является градиент. Ну и что такое градиент семантики, кто знает это?).

на действительных первооткрывателей направления В. Сифорова и А. Суханова.

В настоящее время в мировых литературных источников информология фигурирует, как современная парадигма «информационных знаний» («the modern paradigm of information science»). И в чём состоит эта «современность» информологии?

Так, по А. Хорри, информология, — это наука об информации и информационных системах (в т.ч. таковых информационно-поисковых) [12]. А ещё А. Хорри считает, что информология включает в себя информатику.

В то же время в [13] утверждается, что, наоборот, — «проблемы информологии охватывнотся информатикой». Аналогичное утверждается и в [10]. А охватываются они, потому что информология — это «дисциплина об односторонней передаче информации» [10]. Но почему только о «передаче информации»? И как понимать эту «односторонность передачи» — от чего и к чему?

По мнению же М. Мокия и его коллег [14], информология это есть самостоятельная наука, - далее дословно: «объектом изучения которой являются пространство (? – А.Б.), пространственная организация информации, а также закономерности пространственного построения информационных систем. При этом информологию следует воспринимать как науку, концепция которой является возможным вариантом общего системного подхода в исследовании окружающего мира. Общей задачей информологии служит объединение и классификация знаний, полученных в рамках научных направлений, которые исповедуют разные принципы исследований. Целью является придание всем этим знаниям единой смысловой насыщенности» и т.д. и т.п.

В данном случае из имеющих место подобных определений информологии несколько более квалифицированным является приведенное в [15]. В нём утверждается, что «информология» представляет собой удобный термин для обозначения науки об информации. Автор [15] полагает, что в том сугубо коммуникационном аспекте, как это имеет место у К. Шеннона, наука «теория информации» полностью поглощается винеровской кибернетикой. А такая всеобщая субстанция, как информация, должна иметь свою собственную область знания, которую удобно именовать именно, как «информология» А удобно именовать такую теорию ин-

формации «информологией», – потому, что термин «информология», с одной стороны, полностью выражает этимологию термина «теория информации», а с другой, выражает эту этимологию в одно слово (но ... – два слова «теория информации») и притом выражает эту этимологию в слово достаточно короткое [15].

Но здесь следует отметить, что даже если и согласиться с полагаемым винеровским поглощением шенноновской теории, то почему всё же не оставить за предлагаемым автором [15] содержанием уже имеющийся «теория информации», не претендуя тем самым на уже занятый термин «информология». Да и вообще: «Не вноси новых сущностей без особых на то надобностей»⁵.

Имеет место и ещё одна современная, — 2006 год, и, пожалуй, в наибольшей степени заслуживающая внимания трактовка понятия информологии. Здесь, — таковая, содержащаяся в [16]. В данном случае автор [16] определяет информологию, как науку, находящуюся «на стыке физики, философии и информатики, изучающую информационные аспекты процессов взаимодействия материальных тел». Таким образом, по [16], информология представляет собой в сущности науку об информационных процес

сах взаимодействия материальных тел. А, как известно, эти тела бывают «неживыми», («косными»), «живыми»-«био» и «живыми»-«ноо». При этом информационные процессы взаимодействия «неживых» тел, как определённые только на связанной («природной») [17, 18] информации, как показано в [17,18], являются недоступными для использования человеком. Но ... информационные процессы взаимодействия «неживых» тел с «живыми»-«ноо»-искусственными («арт»); «живых»-«ноо»-искусственных («арт») между собой («apт») и «живых»-«ноо»-искусственных с «неживыми»⁶. Эти процессы, как определённые на связанной и свободной [17,18] информации, как показано в [7, 8] являются техногенными и антропогенными информационными операциями. Что же касается информационных процессов взаимодей-«ствия «живых»-«био» и «живых»-«ноо» естественных (природных) тел, то их, как относимых к естественным наукам, - ботанике, зоологии, психологии (а лучше, - к таким новым, - предлагаемым к именованию, наукам, как, скажем, «информационная ботаника», «информационная физиология», «информационная психология»), из

⁴ Захар: «Флюоидальные функции диффундируют к процессам эволюционной интеграции». Захар не прав: «Эволюционная интеграция диффундирует к процессам флюоидальных функций».

⁵ У. Оккам.

 $^{^6}$ Всё это достаточно подробно рассматривается в теории информационных операций [7, 8].

рассмотрения в данном контексте следует исключить. (Исключить, — чтобы не перегружать излагаемое именно в данном контексте, хотя эти науки вполне могут рассматриваться не только отдельно, но ещё и как соответствующие разделы информологии или, как оказывается, — те же разделы информатики по [2]).

В процессе изложенного был наработан адаптированный к приведенному выше суждению: «информология — это наука о взаимодействия материальных тел», алфавит. В нём, совпадающим с алфавитом понятия информатики по [2] и позволяющим, таким образом, осуществить системное сравнение этих наук, определение информологии [16] принимает, соответственно, вид: информология — это наука о техногенных и антропогенных информационных операциях.

А теперь обратимся к понятию информологии, введённым академиком В. Сифоровым и его коллегой А. Сухановым ещё в 1977-м году [9]. Так, по В. Сифорову и А. Суханову: «Информология – это наука о процессах и законах передачи, распределения, обработки и преобразования информации». И ещё: «В наши дни информология изучает не только технические объекты, но также мир животных и растений, человека и человечекого общества». И наконец: «Информология исследует информационные процессы ...». А это, - также в алфавите понятия информатики по [2] и, таким образом, также системно означает, что, по В. Сифорову и А. Суханову, информология – это о техногенных, антропогенных наука и биогенных информационных операциях.

Как было отмечено выше, понятие *информатики* по [2] было определено, как «*наука об автоматизации информационных операций*». Как показано в [2], — таковых техногенных и антропогенных. А это значит, что науки информология и информатика по [2] находятся в отношении включённости типа информатика ⊂ информология.

В данном случае, — отношении включённости, потому что, грубо говоря, информатику здесь следует понимать, как информологию за вычетом биогенных информационных операций (ИО) и при учете ограниченности информатики только ИО автоматизированными. При этом следует отметить, что информатика, — даже согласно [2] (т.е. в отличие от всех известных в настоящее время менее общих, чем данное в [2], определений информатики), является (за счёт биогенных ИО) сильно составной частью информологии по В. Сифорову и А. Суханову.

3. Инфодинамика. В [19] инфодинамика рассматривается, как некое, пред-

ложенное психологом и биохимиком Р. Пормансором (R. Pormansor), развитие *инфорнмационных знаний*, а с учётом установленного выше, — информатики по [2]. В данном случае, — развитие этих наук в направлении учёта в них информационных аналогий второго начала термодинамики и понятия энтропии [19].

При этом следует отметить, что понятие инфодинамики, — и тоже впервые, но не как развитие информационных знаний-информатики по [2], а как развитие *теории информации* и тоже, — в направлении учёта в ней информационных аналогий второго начала термодинамики и понятия энтропии, было введено задолго до Р. Пормансора, — ещё в 1986 году, Ульяновичем (Ulanowicz) [19].

А в основе этого учёта в обоих случаях отмеченного развития, — как информационных знаний-информатики по [2], так и теории информации, а следовательно и информации, лежит открытый в 1949 году К. Шенноном и В. Вивером изоморфизм физического (термодинамического) и информационного разнообразия [20].

В настоящее время инфодинамика («информодинамика») находится в стадии бурного развития — на одном только английском языке опубликовано порядка двухсот работ. В своём современном статусе она, — это следует из [21–23], представляет собой, — в связи с учётом информационных аналогий второго начала термодинамики и понятия энтропии, науку о наиболее общих энтропийно-негэнтропийных закономерностях информационных процессов в системно-сложных (вплоть до Универсума⁷) открытых динамических образованиях.

Т.е. инфодинамика – это наука о предельно сложных (здесь, - о сложных не только *техногенных*, но и *антропо-биогенных*. Иначе не будет «предельности») *информаци*онных операциях (здесь именно операциях а не таковых процессах, поскольку в данном случае, в связи с восхождением к предельной сложности, неявно предполагается ещё и целесообразность), выражающих поведение столь же предельно сложных, - вплоть до Универсума, открытых (неавтономных) динамических образований. При этом следует отметить, что, в связи с ориентацией на процессы Универсума, инфодинамика, в отличие от других, менее амбициозных наук (информатики, информационных знаний, информологии), должна быть определена не только, как эти науки, - на связанной и свободной информации, но ещё и в пределе, -

⁷ Универсум – совокупность объектов и явлений в целом. В общем случае, – вся Вселенная.

на информации абсолютно свободной и Абсолютной [24].

В соответствии с этим предполагается, что прикладные результаты современной инфодинамики могут восходить даже до «принципов построения («природной аксиоматики») Вселенной» [18, 20]. В этом отношении инфодинамика близка к информациолологии [32] (за вычетом некорректностей последней).

Что же касается отношений инфодинамики с ранее рассмотренными науками, то они в данном случае имеют вид: информационные знания с информатика с информология ⊂ инфодинамика.

4. Информациология.

При взгляде на лицо Паулы почему-то сразу подумалось, что у нее и ноги кривые.

Э. Кестнер

Информациология – это «фундаментальная генерализационно-единая наука, изучающая в вакуумных и материализованных сферах Вселенной самоотношения, конформные самоотображения и соотношения нульматериальных точек, предметов, организмов, объектов, процессов и явлений природы и общества, исходя из фундаментального принципа информациологического подхода. Информациология, будучи многофункциональной наукой, изучает все субэлементарныё процессы и явления в живой и неживой природе и во Вселенной в целом»⁸ [13].

И ещё об информациологии, - в такой её предназначенности, как [36]: «информациология - основа развития общества», «информациология биосферы и космоса», «информационная модель Вселенной» «информациология человека», «всемирный информационно-единый мысленно-зрительный язык», и т.д.

А вот ещё, - о структуре, информациологии [25]: она включает в себя «эвристическую модель саморождения, саморазвития и самораспада биогенных микро- и макромерных организмов представляемую в виде логической схемы:

ПРОСТРАНСТВО ВСЕЛЕННОЙ -> ВРЕ-МЯ -> ДВИЖЕНИЕ -> ЭНЕРГИЯ -> MACCA-> TEMΠΕΡΑΤΥΡΑ -> ΓΕΗΕ-РАЛИЗАЦИОННАЯ ФУНКЦИЯ АВТО-ИН-ФОРГЕНЕЗИСА ВСЕХ МИРОВЫХ КОНСТАНТ - > КОСМИЧЕСКИЕ ЛУЧИ – > СОЛНЕЧНЫЕ ЛУЧИ – > ПРОЦЕССЫ ВСЕМИРНОГО ИНФОРМАЦИОННОГО РАВНОВЕСИЯ» – ?! И т.д. и т.п.

Ближайшая аналогия, – меню пресловутой лавки Бонифация⁹:

«Здесь у нас духи французские, Апельсины марокканские, Две бутылки кваса русские, Видео американские. Банки кофе из Бразилии, Из Швейцарии часы. И все время в изобилии Есть китайские трусы. Здесь недавно даже было И хозяйственное мыло. Вот! Каждый здесь себе по вкусу

все, что выдумал, найдет!».

фрагмент информациологии [25], - таблица так называемых «иннеотехнологий» формационных («неоинформтехнологий»), куда занесены открытия Лобачевского («лобаинформтехнология», Дарвина (дарвинформтехнология», Менделеева («мендинформтехнология») и др., для которых (открытий) выделены такие свойства, как энергия, частота, масса, длина, время и соответствующие единицы измерения. Тогда, например, для неэвклидовой геометрии Лобачевского получаются такие единицы измерения, как лобаватт, лобагерц, лобаграмм, лобаметр, лобасекунда (?!). И то же, – для других отраслей знания. А в результате получается, что по этим свойствам геометрию Лобачевского можно измерить в количестве периодических систем Менделеева (А как быть при этом с принципиальной неизмеряемостью семантик этих открытий и семантик вообще?). Аналогично, по [25], – для пар открытий Лоренца – Лобачевского, Дарвина - Менделеева, Максвелла - Галилея и др. – таблица.

(Правда, в данном случае информациологический подход не является сильно оригинальным. - В своё время коллеги и ученики акад. Л. Ландау уже измеряли творческий потенциал друг друга, как получается, в «нфоромациологических» единицах «дау»).

А вот, например, определение основополагающего для информациологии понятия информации [25]: «это безначально-бесконечный авторегенерационный законопроцесс фундаментальных отношений энергии, массы и антимассы в материализованном и дематериализованном структурно-сотовом пространстве и времени Вселенной». Воистину, знание, - сила! Так что же всётаки есть информация?

 $^{^{8}}$ «Да ..., сказали русские мужики» (А. Мареев): «Оно бы ничего, если бы кабы что, а как коснёшься чего, - тут тебе пожалуйста».

⁹ М. Энтин – автор текстов к мультфильму «Бременские музыканты».

Названия	Размерности и обозначения основных единиц неоинформтехнологий					
неоинформтехнологий	Множители	Энергия (мощность)	Частота	Macca	Длина	Время
Лобаинформтехнология	10^{100}	Лобаватт (ЛбВт)	Лоба (ЛбГц)	Лоба (Лбг)	Лоба (Лбм)	Лоба (Лбс)
Дарвинформтехнология	1090	Дарвватт (ДрВт)	Дарв (ДрГц)	Дарв (Дрг)	Дарв (Дрм)	Дарв (Дрс)
Мендинформтехнология	1080	Мендватт (МдВт)	Менд (МдГц)	Менд (Мдг)	Менд (Мдм)	Менд (Мдс)
Лореинформтехнология	10 ⁷⁰	Лореватт (ЛрВт)	Лоре (ЛрГц)	Лоре (Лрг)	Лоре (Лрм)	Лоре (Лрс)
Максинформтехнология	10 ⁶⁰	Максватт (МаВт)	Макс (МаГц)	Макс (Маг)	Макс (Ма	Макс (Mac)
Ньютинформтехнология	10 ⁵⁰	Ньютватт (НюВт)	Ньют (НюГц)	Ньют (Нюг)	Ньют (Нюм)	Ньют (Нюс)
Галиинформтехнология	1042	Галиватт (ГлВт)	Гали (ГлГц)	Гали (Глг)	Гали (Глм)	Гали (Глс)

Или вот ещё из [25]: «Информация как абсолютная истина ...». Как также показано в [17, 18, 24], абсолютной истиной является только абсолютно свободная и Абсолютная информация, просто истиной – связанная информация, а информация свободная вообще истиной быть не может. Хотя бы потому, что она принципиально отделена от истины погрешностями – «концептуальной» («модельной»), методической и аппаратурной.

Или вот ещё [25]: «Информацион является основной характеристикой всех объектов, полей, излучений, их следов, сред и всего пространства Вселенной в целом. Он рассматривается как генерализационно-единый показатель твердого, жидкого, плазменного, газообразного и вакуумного состояний пространства Вселенной. Кроме того, информацион выражает меру количества информации, энергии, массы, движения, (скорости), плотности и т.д.».

Здесь следует отметить, что, так сказать, информацион, как, – по смыслу, некая гипотетическая предельно-вырожденная «частица» физического вакуума, материальной уже не является, а, как, таким образом, существующая вне пространства, а следовательно и времени, является чисто (без материальной формы) информационной монадой. Здесь, таким образом, является одной только семантикой информации. И потому информацион не может служить ни «характеристикой», ни «показателем» чего-либо. Он является сутью этого «чего-либо».

Или вот, например, «закон сохранения информации», который в [25] формулируется, как: «Суммарное количество информации (*I*) и энтропии (*S*) *i*-го состояния пространства или его соответствующей области, возникающее в резуль-

тате любого процесса, всегда является постоянным:

$$\sum_{i=1}^{\infty} I_i + \sum_{i=1}^{\infty} \left(-S_i \right) = \text{const}, \tag{1}$$

где i — один и тот же i-й процесс (состояние), для которого замеряется (рассчитывается) и количество информации, и величина энтропии».

В данном случае, прежде всего, неясно, что есть такое «состояние пространства». А уж если и представить его как-то интуитивно, то даже в этом случае остаётся неясным, почему в приведенном выше соотношении множество рассматриваемых состояний пространства является счётным, а не континуальным. А уж если оно является континуальным, то оказывается совершенно непонятным, как можно дискретным образом (через сигму) суммировать элементы такого множества. Очевидно, здесь нужно осуществлять интегрирование плотности чего и по чему? И ещё. Каждому состоянию пространства в (1) соответствует изоморфно некая связанная информации, являющаяся объективной. Видимо, в этом и заключается смысл второго слагаемого в приведенном выше соотношении. Тогда первое слагаемое в нём должно относиться к свободной, - субъективной, информации. Но, очевидно, что количество её, как субъективной, в связи с присущей ей погрешностью (концептуальной, методической, аппаратурной), определить означенным дискретным образом невозможно.

А вообще по поводу утверждаемого в [25] «сохранения информации» можно с полной достоверностью заявить, что никакому «сохранению» информация (данные, сведения, знания) не подвержена.

В самом деле. В материальном мире информация представляет собой совокуп-

ность её семантики и информационнофизической формы семантики. И потому в данном случае семантика «живёт» до тех пор, пока «живёт» её физическая форма. Но «ничто не вечно под луной» ... Тому вполне научной формулировкой является известный закон Чизхолма: «Всё, что может испортиться, — портится», и не менее известное следствие из этого закона: «А всё, что не может портиться, — портится тоже».

В целом же по информациологии как науке, претендующей на некое метазнание, следует обратить внимание на ряд означенных выше ложных и неудачных её положений. И здесь срабатывает закон многоместного «И»: даже тысяча имеющих место прекрасных единиц может быть обнулена всего лишь одним нулём. А таких «нулей» в современной информациологии, как показано, имеет место достаточно много.

Известно, что основы информациологии были заложены в шестидесятых годах. Это есть совершенно детский возраст для столь «генерализационной» глобальной науки, как представляется, претендующей на поглощение и информатики, и информационных знаний, и информологии, и информаники. И много чего ещё. При условии корректности, — в перспективе, основных представлений информациологии.

А пока, — как «план 2020» информациологии, можно лишь привести слова из «гимна информациологов¹⁰», прозвучавшего в Кремлёвском дворце съездов на «Всемирном информациологическом форуме-2000»:

«...Всем нужна информациогенная среда. В ней – мироздания основа,

В ней – информационный код развития всего

И информациология готова

Раскодировать его». Как говорится, дайто Бог.

Заключение

(Отношения наук «информатика», «информационные знания», «информология», «информациология»).

Из этимологии термина «информатика» с необходимостью и достаточностью следует, что это есть наука об автоматизации информационных операций.

Из этого определения получается, что наука «информационные знания» представляет собой недостаточно чётко, — индуктивно (перечислением входящих субъектов), сформулированную, составляющую науки

Информология. В данном случае с учётом исследуемых ею биогенных информационных операций и ограниченности информатики только автоматизированными информационными операциями, получилось так, что, наоборот, в отличие от информационных знаний, информатика представляет собой составляющую информологии, т.е. информатика ⊂ информология.

И, наконец, инфодинамика, как наука об информационных операциях в предельно сложных, вплоть до Универсума, открытых динамических образованиях, является существенной подвижкой информологии, а следовательно, — информатики и информационных знаний.

В результате приведенных посылок, получается, что рассматриваемые информационные науки оказываются связанными следующими отношениями включённости: информационные знания — информатика — информология — инфодинамика.

Что же касается информациологии, то она является ухудшенной многочисленными некорректностями имитацией инфодинамики.

В целом же всё установленное явилось определённой адаптацией действующих информационных наук к известному гносеологическому принципу К. Циолковского: «Весь процесс науки состоит в стремлении к монизму, к единству, к элементарному началу»).

Автор благодарит профессора Гонконгского университета науки и технологии [Hong Kong University of Science&Technology (HKUST)] К. Новосёлова за рекомендованные материалы и заинтересованное конструктивное обсуждении.

Список литературы

- 1. Information-science // Encyclopadia Britannica // Интернет / http://britannica.com / E. Bchecked / topic/287881 / Information-science.
- 2. Бондаревский А.С. Информатика как наука об автоматизации информационных операций // Интернет.
- 3. Information science // Интернет / http://en.wikipedia.org/wiki/Information_science.
- 4. Новосибирский государственный университет, Сибирское отделение РАН, Институт вычислительных технологий. История и методология информатики // Интернет /

[«]информатика»¹¹. Т.е. выходит, что информационные знания — это есть несколько «подпорченно» сформулированная составляющая информатики. Таким образом, можно считать, что информационные знания ⊂ информатика.

 $^{^{10}}$ Автор, — В. Ажажа, крупный специалист в области летающих тарелок.

¹¹ Здесь имеется в виду неучёт в составе информационных знаний принадлежащих информатике ИО классов «Восприятие» и «Воспроизведение».

- $http: \hspace{0.2cm} //www.sbras.ru/NSK seminar/upload/200704091527140. \\ hystory.pdf.$
- 5. Михайлов А.И., Чёрный А.И. Основы информатики. – М.: Наука, 1968.
- 6. Бондаревский А.С. Предметная область информатики как науки об автоматизаии информационных операций // Интернет.
- 7. Бондаревский А.С. Метрология информационных операций. Основания теории рисков // Электронная техника. Серия 3 Микроэлектроника. Вып. 1 (150). 1996.
- 8. Бондаревский А.С. Информационные операции: понятие, канонические классы и виды // Интернет.
- 9. Сифоров В.И., Суханов А.П. Информация, связь, человек. М.: Знание, 1977.
- 10. Коган В.З. Маршрут в страну информологию. М.: Наука, 1985.
- 11. Informology // Интенрнет / http://en.wikipedia.org/wiki/Informology.
- 12. What is Informology? // Informology (Iranian Journal) / Интернет англ./ http://sites.go- ogle.com/site/informology.
- 13. Энциклопедия информациологии: учебное пособие. М.: Информациология, 2000.
- 14. Мокий В.С., Жамборова А.О., Шегай О.Е. Информология // Интернет/http: // www. procesor.ru/678.htm.
- 15. Partyko Z.V. The modern paradigm of information science: Informology Automatic // Documentation and Mathematical Linguistics, 2009. №6. (Оригинал, Парты-

- ко З.В. Современная парадигма информационных знаний // Научно-техническая информация. Серия 2. 2009. №11).
- 16. Кизлов В.В. Основания информологии и теории информации // Интернет / http://www.portalus.ru/modules/science/rus_readme.
- 17. Бондаревский А.С. Понятие и разновидности информации//Интернет/http://www. rae.ru/zk/arj/2008/06/Bondarevskii 2.pdf.
- 18. Бондаревский А.С. Информация: свойства и разновидности // Интернет.
- 19. Salthe S. Informatics, a Developmental Framework for Ecology/Economics // Интернет / http://www.ecologyandsociety.org/vol7/iss3/art3/main.html#Infodynamics.
- 20. Shannon C., Weaver W. The Mathematical Theory of Communication. Urbana: University of Illinois Press, 1949.
- 21. Лачинов В.М., Поляков А.О. Собственные теории информатики. Избранные лекции к обоснованию информодинамики. СПб: Изд. СПбГТУ, 1998.
- 22. Лийв Э. Х. Инфодинамика: Обобщенная энтропия и негэнтропия. Талинн: Лийв, 1998.
- 23. Лачинов В.М., Поляков А.О. Информодинамика или Путь к Миру открытых систем. СПб: Изд-во СПбГТУ, 1999.
- 24. Бондаревский А.С. Информация: метаразновидности и определения // Интернет.
- 25. Юзвишин И.И. Информациология. М.: Радио и связь, 1996.