Language:   RUSENG
Scientific Journal
ISSN 1812-7339

Physics and mathematics
Rudakova A.V. 1, Oparicheva U.G. 1, Grishina A.E. 1, Kataeva G.V. 2, Emeline A.V. 1

1. Saint-Petersburg State University
2. Dimitrovgrad Branch of National Research Nuclear University MEPHI


In this review, the analysis of literature on fundamental exploration of the photoinduced superhydriphilicity phenomenon on the metal oxide surfaces has been presented as from its discovery in 1997 to nowadays. It was figured out that main difficulties in research are characterization of initial state and poor reproducibility of the results presented by different research groups. Three dominating in literature hypothesized mechanisms of the effect have been reviewed. It was concluded that there is no common and experimentally supported theory on the origin of photoinduced superhydrophility effect yet; the conclusions made by different authors contradict to each other. It was clearly shown that electronic photoexcitation of solids plays an important role at the first stages of surface photoinduced hydrophilic conversion. Also, it was shown the necessity to take into account the existence of poly-layered hydrate coverage on the surface of nanocoatings and the surface energy alteration during thermodynamic equilibrium stating under any influence, including UV irradiation. At the same time, subsequent stages of mechanism still remain elusive.

Keywords: photoinduced superhydrophilicity, heterogeneous catalysis, photoactive materials, titanium dioxide, spectral selectivity, surface acidity

1. Emeline A.V., Rudakova A.V., Sakai M., Murakami T., Fujishima A. Factors affecting UV-induced superhydrophilic conversion of TiO2 surface, J. Phys. Chem. C., 2013. Vol. 117, no. 23, pp. 12086Ц12092.

2. Emeline A.V., Rudakova A.V., Ryabchuk V.K., Serpone N. Photostimulated reactions at the surface of wide band-gap metal oxides (ZrO2 and TiO2): Interdependence of rates of reactions on pressure−concentration and on light intensity, J. Phys. Chem. B., 1998. Vol. 102, no. 52, pp. 10906−10916.

3. Emeline A.V., Kuzmin G.N., Purevdorj D., Ryabchuk V.K., Serpone N. Spectral dependencies of the quantum yield of photochemical processes on the surface of wide band gap solids. 3. Gas/solid systems, J. Phys. Chem. B., 2000. Vol. 104, no. 14, pp. 2989Ц2999.

4. Emeline A.V., Ryabchuk V.K., Serpone N. Factors affecting the efficiency of a photocatalyzed process in aqueous metal-oxide dispersions: Prospect for distinguishing between the two kinetic models, J. Photochem. Photobiol. A.,2000. Vol. 133, no. 1-2, pp. 89-97.

5. Emeline A.V., Sakai M., Murakami T., Fujishima A. Factors affecting surface hydrophilicity of TiO2 nanocoatings , 3d Int. Conf. Semiconductor Photochemistry: Book of Abstracts on the 3d Int. Conf. SP3. (Glasgow, Scotland, UK, April 2010). Glasgow, 2010, pp. 11, 115.

6. Emeline A.V., Rudakova A.V., Oparicheva U.G. Effects of various factors on superhydrophilicity and optical parameters of titania nanofilms, 4th Int. Conf. Semiconductor Photochemistry: Book of Abstracts on the 4th Int. Conf. SP4.†Ц SP4. (Prague, Czech Republic, June 23Ц27 2013). Prague, 2013, pp. KL6. 44.

7. Fujishima A., Zhang X., Tryk D.A. TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep., 2008. Vol. 63, no. 12, pp. 515Ц582.

8. Liu B., Wen L., Zhao X. The surface change of TiO2 thin film induced by UV illumination and the effects on UV-Vis transmission spectra, Appl. Surf. Sci. 2008. Vol. 255, no. 5, iss. 2, pp. 2752Ц2758.

9. Mezhenny S., Maksymovych P., Thompson T.L., Diwald O., Stahl D., Walck S.D., Yates J.T., Jr. STM studies of defect production on the TiO2(110)-(1×1) and TiO2(110)-1×2) surfaces induced by UV irradiation, Chem. Phys. Lett., 2003. Vol. 369, no. 1Ц2, pp. 152Ц157.

10. Miyauchi M., Kieda N., Hishita S., Mitsuhashi T., Nakajima A., Watanabe T., Hashimoto K. Reversible wettability control of TiO2 surface by light irradiation , Surf. Sci. 2002. Vol. 511, no. 1Ц3, pp. 401Ц407.

11. Miyauchi M., Nakajima A., Fujishima A., Hashimoto K. Watanabe T. Photoinduced surface reaction on TiO2 and SrTiO3 films: Photocatalytic oxidation and photoinduced hydrophilicity, Chem. Mater., 2000. Vol. 12, no. 1, pp. 3Ц5.

12. Miyauchi M., Nakajima A., Watanabe T., Hashimoto K. Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films, Chem. Mater., 2002. Vol. 14, no. 6, pp. 2812Ц2816.

13. Nosaka A.Y., Kojima E., Fujiwara T., Yagi H., Akutsu H., Nosaka Y. Photoinduced changes of adsorbed water on a TiO2 photocatalytic film as studied by 1H NMR spectroscopy, J. Phys. Chem. B., 2003. Vol. 107, no. 44, pp. 12042Ц12044.

14. Ohtsu N., Masahashi N., Mizukoshi Y., Wagatsuma K. Hydrocarbon decomposition on a hydrophilic TiO2 surface by UV irradiation: Spectral and quantitative analysis using in-situ XPS technique, Langmuir, 2009. Vol. 25, no. 19, pp. 11586Ц11591.

15. Sakai N., Fujishima A., Watanabe T., Hashimoto K. Enhancement of the photoinduced hydrophilic conversion rate of TiO2 film electrode surfaces by anodic polarization, J. Phys. Chem. B., 2001. Vol. 105, no. 15, pp. 3023Ц3026.

16. Sakai N., Fujishima A., Watanabe T., Hashimoto K. Quantitative evaluation of the photoinduced hydrophilic conversion properties of TiO2 thin film surfaces by the reciprocal of contact angle, J. Phys. Chem. B., 2003. Vol. 107, no. 4, pp. 1028Ц1035.

17. Soria J., Sanz J., Sobrados I., Coronado J.M., Maira J., Hernandez-Alonso M.D., Fresno F. FTIR and NMR study of the adsorbed water on nanocrystalline anatase, J. Phys. Chem. C., 2007. Vol. 111, no. 28, pp. 10590Ц10596.

18. Sun R-D., Nakajima A., Fujishima A., Watanabe T., Hashimoto K. Photoinduced surface wettability conversion of ZnO and TiO2 Thin Films, J. Phys. Chem. B., 2001. Vol. 105, no. 10, pp. 1984Ц1990.

19. Szczepankiewicz S.H., Colussi A.J., Hoffmann M. R. Infrared spectra of photoinduced species on hydroxylated titania surfaces, J. Phys. Chem. B., 2000. Vol. 104, no. 42, pp. 9842Ц9850.

20. Szczepankiewicz S.H., Moss J.A., Hoffmann M.R. Electron traps and the Stark effect on hydroxylated titania photocatalysts, J. Phys. Chem. B., 2002. Vol. 106, no. 31, pp. 7654Ц7658.

21. Takeuchi M., Sakamoto K., Marta G., Coluccia S., Anpo M. Mechanism of photoinduced superhydrophilicity on the TiO2 photocatalyst surface, J. Phys. Chem. B., 2005. Vol. 109, no. 32, pp. 15422Ц15428.

22. Uosaki K., Yano T., Nihonyanagi S. Interfacial water structure at as-prepared and UV-induced hydrophilic TiO2 surfaces studied by sum frequency generation spectroscopy and quartz crystal microbalance, J. Phys. Chem. B., 2004. Vol. 108, no. 50, pp. 19086Ц19088.

23. Wang R., Hashimoto K., Fujishima A., Chikuni M., Kojima E., Kitamura A., Shimohigoshi M., Watanabe T. Light-induced amphiphilic surfaces, Nature, 1997. Vol. 388, no. 6641, pp. 431Ц432.

24. Wang R., Hashimoto K., Fujishima A., Chikuni M., Kojima E., Kitamura A., Shimohigoshi M., Watanabe T. Photogeneration of highly amphiphilic TiO2 surfaces, Adv. Mater., 1998. Vol. 10, no. 2, pp. 135Ц138.

25. White J.M., Szanyi J., Henderson M.A. The photon-driven hydrophilicity of titania: A model study using TiO2(110) and adsorbed trimethyl acetate, J. Phys. Chem. B., 2003. Vol. 107, no. 34, pp. 9029Ц9033.

26. Yan X., Abe R., Ohno T., Toyofuku M., Ohtani B. Action Spectrum analyses of photoinduced superhydrophilicity of titania thin films on glass plates, Thin Solid Films, 2008. Vol. 516, no. 17, pp. 5872Ц5876.

Executive secretary of the journal Bizenkova M.
Head of Information and Technology department Kochegarov S.